Discover how to build a powerful web scraping API with Lovable. Follow our step-by-step guide to efficiently extract data from any website.

Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Setting Up Your Lovable Project
Creating the Dependency Manifest
lovable.json. This file will list all the libraries your project depends on.lovable.json to install Flask, Requests, and BeautifulSoup:
{
"dependencies": {
"Flask": "latest",
"requests": "latest",
"beautifulsoup4": "latest"
}
}
Creating the Main Application File
main.py. This file will contain the API code and web scraping logic.main.py:
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
app = Flask(name)
@app.route('/scrape', methods=['GET'])
def scrape():
# Retrieve the URL parameter from the request
url = request.args.get('url')
if not url:
return jsonify({"error": "URL parameter is missing"}), 400
try:
# Send a GET request to the provided URL
response = requests.get(url)
if response.status\_code != 200:
return jsonify({"error": "Failed to retrieve the webpage"}), 400
# Parse the webpage content with BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Example: Extract text from all paragraph tags
paragraphs = [p.get_text() for p in soup.find_all('p')]
return jsonify({"paragraphs": paragraphs})
except Exception as e:
return jsonify({"error": str(e)}), 500
Entry point for Lovable; ensure the application binds to the correct host and port.
if name == 'main':
app.run(host='0.0.0.0', port=5000)
/scrape that extracts paragraph texts from the given URL.
Configuring and Running Your Web Scraping API
lovable.json manifest.0.0.0.0 on port 5000.
Testing Your API Endpoint
http://<your-lovable-project-url>:5000/scrape?url=https://example.com, replacing https://example.com with the URL you wish to scrape.
Updating and Deploying Changes
const express = require('express');
const axios = require('axios');
const cheerio = require('cheerio');
const app = express();
app.use(express.json());
app.post('/api/scrape', async (req, res) => {
try {
const { url } = req.body;
const response = await axios.get(url);
const $ = cheerio.load(response.data);
// Structuring scraped data into a specific JSON format
const dataStructure = {
pageTitle: $('title').text(),
headers: [],
links: []
};
$('h1, h2, h3').each((\_, element) => {
dataStructure.headers.push({
tag: element.tagName.toLowerCase(),
text: $(element).text().trim()
});
});
$('a').each((\_, element) => {
const href = $(element).attr('href');
if (href && href.startsWith('http')) {
dataStructure.links.push({
text: $(element).text().trim(),
href
});
}
});
res.json({ success: true, data: dataStructure });
} catch (error) {
res.status(500).json({ success: false, error: error.message });
}
});
app.listen(3000, () => {
console.log('Web scraping API is running on port 3000');
});
const express = require('express');
const puppeteer = require('puppeteer');
const axios = require('axios');
require('dotenv').config();
const app = express();
app.use(express.json());
app.post('/api/analyze', async (req, res) => {
const { url } = req.body;
if (!url) {
return res.status(400).json({ success: false, error: 'URL is required' });
}
let browser;
try {
browser = await puppeteer.launch();
const page = await browser.newPage();
await page.goto(url, { waitUntil: 'domcontentloaded' });
const pageContent = await page.evaluate(() => document.body.innerText);
await browser.close();
// Call external Sentiment Analysis API (MeaningCloud) to analyze scraped text
const sentimentApiUrl = 'https://api.meaningcloud.com/sentiment-2.1';
const params = new URLSearchParams({
key: process.env.MEANINGCLOUD_API_KEY,
lang: 'en',
txt: pageContent
});
const response = await axios.post(sentimentApiUrl, params);
const sentimentData = response.data;
res.json({
success: true,
url,
sentiment: sentimentData
});
} catch (error) {
if (browser) {
await browser.close();
}
res.status(500).json({ success: false, error: error.message });
}
});
app.listen(3000, () => {
console.log('Scraping & sentiment analysis API running on port 3000');
});
const express = require('express');
const axios = require('axios');
const puppeteer = require('puppeteer');
const Redis = require('ioredis');
const lovable = require('lovable');
const app = express();
const redis = new Redis();
app.use(express.json());
app.post('/api/scrape', async (req, res) => {
const { url, useDynamic } = req.body;
if (!url) return res.status(400).json({ error: 'URL is required' });
const cacheKey = `scrape:${url}`;
try {
let cachedResult = await redis.get(cacheKey);
if (cachedResult) {
return res.json({ source: 'cache', data: JSON.parse(cachedResult) });
}
let rawHtml;
if (useDynamic) {
const browser = await puppeteer.launch({ args: ['--no-sandbox'] });
const page = await browser.newPage();
await page.goto(url, { waitUntil: 'networkidle2' });
rawHtml = await page.content();
await browser.close();
} else {
const response = await axios.get(url);
rawHtml = response.data;
}
const parsedData = lovable.extract(rawHtml, {
title: { selector: 'title', type: 'text' },
description: { selector: 'meta[name="description"]', attr: 'content' },
links: { selector: 'a', type: 'array', attr: 'href' }
});
await redis.set(cacheKey, JSON.stringify(parsedData), 'EX', 3600);
res.json({ source: 'live', data: parsedData });
} catch (err) {
res.status(500).json({ error: err.message });
}
});
app.listen(4000, () => {
console.log('Lovable Web Scraping API running on port 4000');
});

Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Best Practices for Building a Web Scraping API with AI Code Generators
This guide explains how to build a web scraping API using AI code generators. The guide is structured to help even those without a technical background understand the process step by step.
Prerequisites
Setting Up Your Development Environment
python -m venv venv
# On Windows
venv\Scripts\activate
On Unix or MacOS
source venv/bin/activate
pip install requests beautifulsoup4 flask
Planning Your Web Scraping Functionality
Using AI Code Generators to Assist Development
// Prompt example for scraping:
"Generate a Python function using requests and BeautifulSoup to retrieve the title and meta description from a given URL."
Building the API Framework
app.py which will contain the API code.app.py:
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
app = Flask(name)
def scrape_site(url):
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.title.string if soup.title else "No title found"
meta_desc = ""
if soup.find("meta", attrs={"name": "description"}):
meta_desc = soup.find("meta", attrs={"name": "description"}).get("content")
return {"title": title, "description": meta_desc}
else:
return {"error": "Failed to retrieve the content"}
@app.route('/scrape', methods=['GET'])
def scrape_api():
url = request.args.get('url')
if not url:
return jsonify({"error": "URL parameter is missing"}), 400
data = scrape_site(url)
return jsonify(data)
if name == 'main':
app.run(debug=True)
Integrating AI Code Generator Enhancements
// "Improve error handling in the scrape\_site function and add logging to track requests."
Testing Your Web Scraping API
python app.py
http://127.0.0.1:5000/scrape?url=https://example.com
Implementing Best Practices for Scalability and Reliability
Deploying Your Web Scraping API
requirements.txt file. Generate it by running:
pip freeze > requirements.txt
Maintaining and Updating Your API
By following these steps, you can successfully build a robust and efficient web scraping API with support from AI code generators.
When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.